Gap junctions are required for NMDA receptor dependent cell death in developing neurons.

نویسندگان

  • Juan Carlos de Rivero Vaccari
  • Roderick A Corriveau
  • Andrei B Belousov
چکیده

A number of studies have indicated an important role for N-methyl-D-aspartate (NMDA) receptors in cell survival versus cell death decisions during neuronal development, trauma, and ischemia. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all three of these conditions. However, whether neuronal gap junctions contribute to NMDA receptor-regulated cell death is not known. Here we address the role of neuronal gap junction coupling in NMDA receptor-regulated cell death in developing neurons. We report that inactivation or hyperactivation of NMDA receptors induces neuronal cell death in primary hypothalamic cultures, specifically during the peak of developmental gap junction coupling. In contrast, increasing or decreasing NMDA receptor function when gap junction coupling is low has no or greatly reduced impact on cell survival. Pharmacological inactivation of gap junctions or knockout of neuronal connexin 36 prevents the cell death caused by NMDA receptor hypofunction or hyperfunction. The results indicate the critical role of neuronal gap junctions in cell death caused by increased or decreased NMDA receptor function in developing neurons. Based on these data, we propose the novel hypothesis that NMDA receptors and gap junctions work in concert to regulate neuronal survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal Gap Junctions Are Required for NMDA Receptor - Mediated 1

19 20 21 2 ABSTRACT 22 23 NMDA receptors (NMDAR) play an important role in cell survival versus cell 24 death decisions during neuronal development, ischemia, trauma and epilepsy. 25 Coupling of neurons by electrical synapses (gap junctions) is high or increases in 26 neuronal networks during all these conditions. In the developing CNS, neuronal gap 27 junctions are critical for two different t...

متن کامل

Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke.

N-methyl-D-aspartate receptors (NMDARs) play an important role in cell survival versus cell death decisions during neuronal development, ischemia, trauma, and epilepsy. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all these conditions. In the developing CNS, neuronal gap junctions are critical for two different types of NMDAR-depend...

متن کامل

Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin

Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated c...

متن کامل

Effects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture

Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...

متن کامل

NMDA Receptor Activation Strengthens Weak Electrical Coupling in Mammalian Brain

Electrical synapses are formed by gap junctions and permit electrical coupling, which shapes the synchrony of neuronal ensembles. Here, we provide a direct demonstration of receptor-mediated strengthening of electrical coupling in mammalian brain. Electrical coupling in the inferior olive of rats was strengthened by activation of NMDA-type glutamate receptors (NMDARs), which were found at synap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2007